Air Force Materiel Command

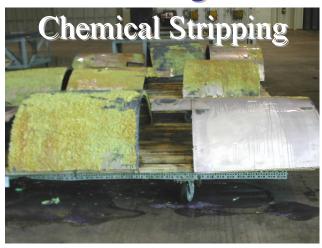
Developing, Fielding, and Sustaining America's Aerospace Force

Air Force Laser Coatings Removal Program

Georgette Nelson

Concurrent Technologies Corporation

Overview


- Problem Statement Current Coating Removal Operations
- Air Force Laser Program
 - Current Air Force (AF) Laser Coating Removal Programs
 - Portable Handheld Laser Coatings Removal System (PLCRS)
 - Specialty Coatings Laser Removal System (SCLRS)
 - Glovebox
 - Robotic Laser Coatings Removal System (RLCRS)
 - Advanced Robotic Laser Coatings Removal System (ARLCRS)
- Summary

Problem Statement

Current Coating Removal Operations At ALCs

Supplemental stripping is an expensive, time-consuming process that creates hazardous waste & emissions

Air Force Laser Coating Removal Program

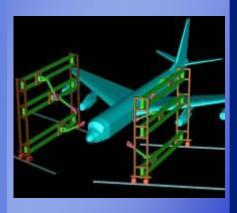
Program Goal:

Establish and expand the use of laser technology as a viable alternative technology for coating removal in remanufacturing operations

Benefits

- ✓ Reduce Flow Time
- ✓ Cost Effective
- √ Safety Compliant
- ✓ No Damage to Substrate
- ✓ Selective Stripping
- ✓ Increase Facility Capacity
- ✓ Environmentally Friendly

Approach


Large area,
off-aircraft laser
coating removal
applications

60% Complete

Phase III

Automated full aircraft laser coating removal applications

Design Phase In-Progress

Phase I

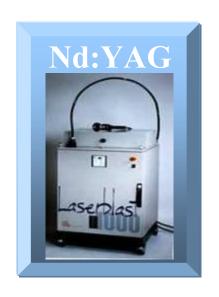
Handheld laser coating removal applications


98% Complete

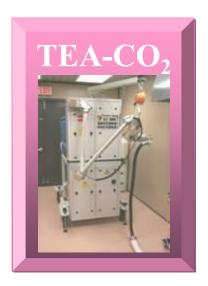
Phase I Programs

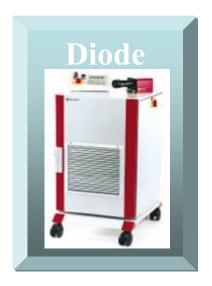
Handheld Laser Coatings Removal Systems

- Objective:
 - Evaluate ability of hand-held laser systems to supplement existing small-area depainting processes on components and aircraft at depot and field levels
 - Task 1 Standard Coatings
 - Task 2 Specialty Coatings
- Benefits/Impacts:
 - Increase production rate
 - Replace Methylene Chloride, MEK, and PMB uses
 - Reduce hazardous waste generation
 - Reduce handling and storage
 - Reduce worker exposure to known carcinogenic materials



Phase I Program




Laser Systems

- Handheld Laser systems tested:
 - 40 Watt Nd:YAG laser, 1064 nm wavelength
 - 120 Watt Q switched Nd:YAG laser, 1064 nm wavelength
 - 500 Watt Q switched Nd:YAG laser, 1064 nm wavelength
 - 250 watt CO₂ laser, 10,600 nm wavelength
 - 250 watt Diode laser, 808 or 940 nm wavelength

Phase I Program Task 1 - Testing Protocol

Test Specimens

- Substrates:
 - 4130 Steel
 - 2024 and 7075 Aluminum
 - Graphite epoxy
 - Fiberglass epoxy
 - Metallic honeycomb
 - Kevlar
- Coatings:
 - Primer
 - MIL-P-23377G
 - MIL-P-53030
 - PR1432GP
 - Topcoat
 - MIL-C-46168, Type IV
 - MIL-C-64159, Type I (CARC)
 - MIL-PRF-85285, Type I

Mechanical Testing

- Removal Rate
- Visual Damage
- Substrate Temperature
- Clad Penetration
- Surface Profile
- Paint Adhesion
- Hardness
- Fatigue
- Tensile Strength
- 4 Point Flexure (composite)

Phase I Program Task 1 - Testing Results

Removal Rate

 Adequate average removal rate for small area/nitpicking operations (≈14 in²/min)

Visual Damage Assessment

No visual indication of surface damage

Substrate Temperature

- Results: Measurements confirmed temperature spikes are not high enough to cause damage
 - Temperature rise
 - •<200° F for 120 watt Nd:YAG</p>
 - -<150° F for 40 watt Nd:YAG</p>

Test results indicate use of laser does not significantly affect common substrate materials

Full Set of mechanical test results compiled in ESTCP Final Report (August 05) - <u>www.estcp.org</u>

Phase I Program

Task 2 - Specialty Coatings

- Ability of hand-held laser systems to remove specialty coatings was also evaluated
 - Powder Coating
 - Radar Absorbing Material (RAM)
 - Low Observable (LO) Materials
 - Conductive Coatings
 - Sealants
- 500 Watt Q switched Nd:YAG laser, used for stripping trials
 - Lower powered lasers were not able to efficiently remove the thick specialty coatings
- Preliminary results show the Nd:YAG laser tested:
 - Can remove thinner coatings (powder coat and spray LO) and fastener filler quickly and efficiently without overheating the substrate
 - Can remove small areas of sealant efficiently but may not be fast enough to treat large areas
 - Can remove spray RAM and gap filler but the current configuration is not conducive to doing so efficiently
- Final results of mechanical testing are expected to be complete in Nov 06

Phase I Status

ACTIVITY	STATUS	RESULT	
Task 1 - Portable Hand Held Laser Coating Removal System			
Materials Compatibility	100 % Complete		
Environmental Evaluation	100 % Complete		
Safety Evaluation	100 % Complete		
Occupational Health Evaluation	100 % Complete		
Task 2 - Specialty Coating Laser Removal System			
Panel Stripping	100 % Complete		
Mechanical Testing	95 % Complete	In Work	

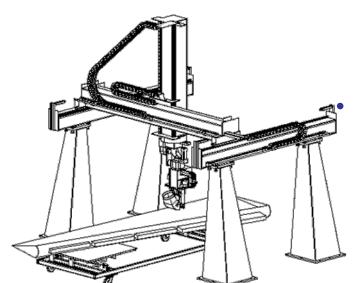
Transition of Handheld Lasers in progress

- Technical procedures drafted for inclusion in T.O. 1-1-8
- Handheld laser systems provided to 3 depots for implementation
 - Ogden Air Logistics Center (OO-ALC),
 - Oklahoma City Air Logistics Center (OC-ALC)
 - Warner Robins Air Logistics Center (WR-ALC)

Phase II Program

Robotic Laser Coating Removal System (RLCRS)

 Dem/val robotic laser coating removal system to replace current chemical/mechanical coating removal methods used on large off-equipment components



- Reduce stripping time increased production
- Replace chemical strippers, MEK,
 PMB and wheat starch
- Potential reductions at OC-ALC include:
 - 13,200 gallons paint stripper
 - 341,260 pounds of solid waste
 - 4003 pounds of VOCs
 - 1,815,000 gallons contaminated waste water

Phase II Program RLCRS System

Robotic Laser System is comprised of several main components

Laser Source

Rofin Sinar CO2 laser

- 6 kW average power
- Highest beam quality of lasers investigated
- Low gas consumption
- Low maintenance requirements

Scanning Optics

Scanlab USA powerSCAN Optics

- COTS system
- Low beam loss (<2%)

PaR Systems Gantry Robot

Operating Envelope: 116" x 116" x 60"

Existing system from SERDP funded program

Re-commissioned with modern control system Commissioning completed 12/05

Contour Following

- Will allow consistent stripping regardless of part geometry
- Several types of contour following sensors available
- Currently evaluating IR and laser sensors
- Contour following control to be completed 3/06

Phase II Program Parts To Be Processed By RLCRS

- •Flaps
- •Ailerons
- •Rudder
- LeadingEdgePanels
- LandingGear Doors

Phase II Program RLCRS Approach

Task III – System Transition and Demonstration

- •Transition system to OC-ALC & train staff (Feb 07)
 - Perform Demonstration (Aug 07)
- •Compare performance versus baseline data (Sept 07)
- •Final Cost Benefits Analysis and Final Report (Dec 07)

<u>Task II – System Assembly and Debugging</u>

- Assemble system (Complete)
- Perform debugging at *CTC* Demo Factory to prevent interference with production at OC-ALC (25% Feb 07)
 - Prepare Demonstration Plan (Complete)
 - Perform facility preparations at OC-ALC (Ongoing)

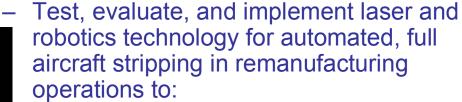
<u>Task I – System Design</u>

- •Evaluate and select system integration company (Complete)
 - •Evaluate and select system components (Complete)
- •Develop design specifications & procure components (Complete)
- •Perform Initial Cost Benefits Analysis and Performance Baseline (Complete)

Phase II Status

ACTIVITY	STATUS
Upgrade of Gantry Control System	Complete – Movement of all 6 axis verified 12/05
System Design	Complete
Procurement of Major Components	Complete – All major components received and integrated
System Assembly / Debug	75% Complete
Materials Testing	10% Complete – Estimated completion in Jan 07
System Transition to OC-ALC	Estimated FY 07

Project On Schedule for Transition to OC-ALC in FY07



Phase III Program

Advanced Robotic Laser Coating Removal System (ARLCRS)

- Reduce cost, flow time, and environmental burden
- Improve facility throughput and operator occupational safety
- Reduce substrate damage and associated repairs
- Enable selective coatings removal

Program Evolution:

 ARLCRS program leverages the PLCRS and RLCRS programs to offer a comprehensive solution

Phase III Program ARLCRS Task I: Feasibility Analysis

- Conducted large aircraft stripping (KC-135) Feasibility Analysis
- Baseline current full aircraft depaint process
- Identify robotic alternatives
 - Established conceptual layout (75% confidence interval [CI])
 - Evaluated robotic conceptual layouts to develop full aircraft stripping
 - Identified and assessed laser systems
 - Selected fiber laser system
 - Gathered ancillary systems information
 - Procured selected laser

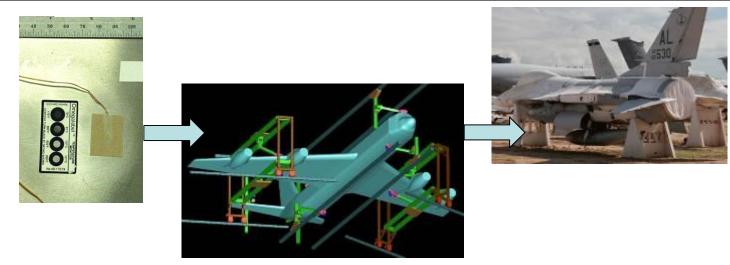
Phase III Program Task II: Prototype Design

- Perform laser demonstration tests
 - Identify, procure, and test system subcomponents
 - Optimize and conduct laser stripping, testing and analysis
- Procure prototype robotic system
 - Refine design and install prototype in Johnstown, PA
 - In process of integrating applicable concepts for detailed design (95% CI) for full aircraft stripping
 - Obtain F-16 aircraft
- Initiate full-scale implementation planning
 - Identify full equipment needs and total costs (F-16)
 - Develop training materials and implementation plan
- Develop prototype test plan
- Plan prototype demonstration
 - Identify facility, material, and aircraft requirements and considerations
 - Develop depaint optimization plan and prototype parameters

Phase III Program Task III: Prototype Demonstration

- Conduct demonstration testing (F-16)
 - Disassemble aircraft (as needed)
 - De-coat aircraft (repeat as needed per test requirements)
 - Characterize materials
 - Capture processing data
- Plan full scale-up
 - Determine location
 - Obtain funding/aircraft engineering approval
 - Finalize design and process

Phase III Program Task IV: System Scale-Up


- Procure full-scale equipment
 - Procure robotic and laser system and associated ancillary equipment
 - Develop equipment acceptance test
 - Complete logistics plan for ALC
 - Coordinate and assist with subcomponent integration
- Install, integrate and debug full-scale system
- Demonstrate system

Phase III Status

ACTIVITY	STATUS
Task I – Feasibility Analysis	Complete – System shown to be feasible, preliminary design complete, laser system ordered
Task II – Prototype Design	10% Complete – Detailed system design begun
Task III – Prototype Demonstration	FY 08
Task IV – System Scale-Up	To Be Determined

Summary

- Laser technology is proven and available
- Results achieved during laboratory testing are positive
- Air Force Program results are being utilized by other organizations to develop their own laser capabilities
 - U.S. Air Force Depots (OC-ALC and OO-ALC)
 - U.S. Army (Ft. Rucker)
 - NASA
 - Coast Guard
 - OEMs (Boeing Aircraft, Raytheon Missiles)
- Based upon favorable results efforts are being made to evaluate laser technology for larger surface area applications
 - Combination of laser technology with robotics

Additional information available on the Air Force Laser Library http://laser.ctcnet.net

